Studying the effect of the hadronic phase in nuclear collisions

with PYTHIA and URQMD

Christian Bierlich, David Dobrigkeit Chinellato, André Vieira, Jun Takahashi

bierlich@thep.lu.se

June 13 2019, Strangeness in Quark Matter 2019

Supported by:

FAPESP grants 16/13803-2, 17/05685-2 &

VR contract no. 2017-0034

Introduction

- Status: A plethora of observables, and almost as many models.
- Analytic and MC approches competitive.
 - Descriptions at percent precision.
 - Well founded in theory.
 - Often lacking a non-QGP baseline.
 - Possibility of over tuning.
- Remove the QGP!
 - Pythia (pQCD + strings) &
 - URQMD (hadronic final state interactions.)
- Establish a solid baseline for AA collisions.

How much room is left on top?

- This talk:
 - 1. The basic idea.
 - The used models (Pythia 8/Angantyr / Hadron vertices / URQMD).

3. Results.

2

The basic idea

• Pythia8/Angantyr delivers a QGP-free final state.

Input

• Produced hadrons with positions and momenta.

Input

• Produced hadrons with positions and momenta.

Input

• Produced hadrons with positions and momenta.

Angantyr – the Pythia heavy ion model (CB, Gustafson, Lönnblad: JHEP 1610 (2016)

139, += Shah: JHEP 1810 (2018) 134)

- Pythia MPI model extended to heavy ions since v. 8.235.
 - 1. Glauber geometry with Gribov colour fluctuations.
 - 2. Attention to diffractive excitation & forward production.
 - 3. Hadronize with Lund strings.
- Particle production: Similarity between:
 - 1. Single diffractive excitation.
 - 2. Secondary absorption.

Secondary absorptive interactions

• Similarity: triple-Pomeron diagrams.

Secondary absorptive interactions

Similarity: triple-Pomeron diagrams.

Diagram weight proportial to $(1 + \Delta = \alpha_{\mathbb{P}}(0))$

$$\frac{ds}{s^{(1-2\Delta)}}\,\frac{dM_D^2}{(M_D^2)^{(1+\Delta)}} \text{ diffractive excitation},$$

$$\frac{ds}{s^{(1-\Delta)}}\,\frac{dM_A^2}{(M_A^2)^{(1-\Delta)}}$$
 secondary absorption.

Relevant results

- Neccesary baseline for URQMD input:
 - 1. Good reproduction of centrality measure.
 - 2. Particle density at mid-rapidity.

And hadron production vertices!

String kinematics (B. Andersson et al.: Phys. Rept.97(1983) 31)

- Lund string connects $q\bar{q}$, tension $\kappa = 1 \text{GeV/fm}$.
- String obey yo—yo motion:

$$p_{q_0/\bar{q}_0=(\frac{E_{cm}}{2}-\kappa t)(1;0,0,\pm 1)}$$

• String breaks to hadrons with 4-momenta:

$$p_h = x_h^+ p^+ + x_h^- p^-$$
 with $p^{\pm} = p_{q_0/\bar{q_0}}(t=0)$

• ... which gives breakup vertices in momentum picture.

Hadron vertex positions (Ferreres-Solé & Sjöstrand: 1808.04619)

• Translate to space—time breakup vertices through string EOM.

$$v_i = \frac{\hat{x}_i^+ p^+ + \hat{x}_i^- p^-}{\kappa}$$

• Hadron located between vertices: $v_i^h = \frac{v_i + v_{i+1}}{2} \left(\pm \frac{p_h}{2\kappa} \right)$

• Formalism also handles complex topologies (99 % of the

Interfacing to URQMD (S. Bass et al.: Prog. Part. Nucl. Phys 41 (1998) 225-370)

- UrQMD v3.4 handles 99.8% of all prompt hadrons
- \bullet Remaining 0.2%: heavy flavor, leptons, γ not treated by UrQMD
 - Heavy flavor (\sim 0.2%): decayed by PYTHIA;
 - Leptons+photons (\sim 0.01%): removed for now
- Centrality obtained via N_{ch} in the ALICE V0M acceptance

Results – Multiplicity and Average Transverse Momenta

- Basic average quantities as expected.
- Little change to multiplicity.

- Slight increase in $\langle p_{\perp} \rangle$.
- Angantyr missing cross–nucleon CR.

Results – spectra and R_{AA}

- High- p_{\perp} particles stopped by low- p_{\perp} ones.
- Effect increases with centrality.

Results – spectra and R_{AA}

- High- p_{\perp} particles stopped by low- p_{\perp} ones.
- Effect increases with centrality.

- High- p_{\perp} part of R_{AA} (few earlier investigations).
- Low- p_{\perp} : poor description already by Pythia for $p_{\perp} < 1$ GeV.

Results – spectra and R_{AA}

- High- p_{\perp} particles stopped by low- p_{\perp} ones.
- Effect increases with centrality.

- High- p_{\perp} part of R_{AA} (few earlier investigations).
- Low- p_{\perp} : poor description already by Pythia for $p_{\perp} < 1$ GeV.

Results – yields

- Large effect from annihilations, especially protons.
- Persists even to peripheral PbPb possibility for pp?

Results – yields

- Large effect from annihilations, especially protons.
- Persists even to peripheral PbPb possibility for pp?

- Rescattering produces correlations long-range in η (the double ridge).
- Previously seen, but not at these energies, with general purpose MC input (Bleicher et al. arXiv:nucl-th/0602009).

- Understanding model influence: Correlations wrt. event plane calculated from Pythia Glauber.
- Automatic removal of jet peak.

- Understanding model influence: Correlations wrt. event plane calculated from Pythia Glauber.
- Automatic removal of jet peak.

- Understanding model influence: Correlations wrt. event plane calculated from Pythia Glauber.
- Automatic removal of jet peak.

Results – elliptic flow coefficients

• v_2 vs centrality: same dynamics as in ALICE data, but 50% magnitude; v_2 via cumulants similar to v_2 with correlations wrt. event plane

Results – elliptic flow coefficients

v₂ vs centrality: same dynamics as in ALICE data, but 50% magnitude; v₂ via cumulants similar to v₂ with correlations wrt. event plane

• Similar conclusion from $v_2(p_{\perp})$

Conclusions

- First results from Pythia Heavy Ion collisions + URQMD hadronic final state.
- MC generated full final states → direct comparison to measured quantities.
- No QGP effects, but sizeable effects on:

Spectra: rescatterings produce R_{AA} -like peak, high- p_{\perp} well described.

Yields: sizeable corrections to baryon yields, esp.

protons.

Flow: Hadronic dynamics generates roughly half of

observed $v_2!$

New baseline leaves significantly less room for QGP effects!

- Opens the door for models with smaller effects.
- Suggests reinterpretation of QGP properties as previously estimated at RHIC and LHC.

Backup

Comparing hadron densities: Hydro vs PYTHIA Angantyr

- At hadronization: similar dimensions in transverse space and similar N_{ch} in PYTHIA versus hydro models such as MUSIC (Schenke et al. arXiv:1009.3244)
- ullet o Hadron densities comparable to typical UrQMD use case
 - Further checks ongoing