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PYTHIA: Monte Carlo for eTe™, ep, pp, pA, AA and more

General purpose event generator for pp and much, much more!
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Recent years: Renewed focus on hadronization models — small
system collectivity.



This talk

e The baseline (single string hadronization) is crucial for further
model development.
e New development based quark spin—spin interactions.
e Historically tuned to LEP, opportunity for ALICE low-mult
tuning?
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e The baseline (single string hadronization) is crucial for further
model development.

e New development based quark spin—spin interactions.
e Historically tuned to LEP, opportunity for ALICE low-mult

tuning?

e News on ropes (coherent multi-string hadronization) improved
and generalized geometry calculation.

e Necessary ingredient for pA and AA ropes.
e Now: rope effects in jet fragmentation: opportunities for
ALICE measurements?



Fragmentation of a single string

e Non-perturbative fragmentation, Lund strings, x = 1 GeV/fm.
e Tuned to LEP data, cleanest environment, poor statistics.
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Fragmentation of a single string

e Non-perturbative fragmentation, Lund strings, x = 1 GeV/fm.
e Tuned to LEP data, cleanest environment, poor statistics.

Flavour by tunnelling

2
A& P o exp (—ﬂ'zi), where m is the quark mass — parameter.

From quarks to hadrons
& eg 0 = % (Juti) + |dd)) not so clear.
1. Spin factors.

2. Mass suppression parameters
3. SU(6) Clebsch—Gordans (fl x sp).

* Not very predictive!

* Crucial for event generation.



No easy choice of parameters!

e Example: Vector/Pseudoscalar meson parameter: y,q x 3.
1. Two string breaks produce a ud state.
2. Q=1and S=0— p*" (vector) or 7" (pseudo—scalar).
3. Prt = 13— Por = 122, where P, + P, = 1.
e Numerically y,q = 0.5 and y; = 0.55: “mass splitting”
parameters.
Should split even further!

& Colour magnetic moments o

1/“121d> 1/(UudMS)a 1/M§

& Simple ansatz:
y(nS) =y1+ nsy2

e Similar argument for diquarks (implementation slightly more
complicated).



Why should | care?

e Low multiplicity is parametrization of LEP!
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Results in eTe™

e Not too much data on interesting final states.
e Tension and “data rot” (extrapolation to full phase space).

Meson multiplicities in e * ¢~ collisions at 91.2 GeV Baryon multiplicities in e " ¢~ collisions at 912 GeV'
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Interesting for ALICE

* Data will rot. Differential preservation key (Rivet).

* Possibilities for re-tuning before model-exclusion.



Results in ep and pp

e DIS = smallest had. system. ZEUS — ¢ enhancement? No!
e Low multiplicity pp: Notable changes. To the better?

Differential cross-section as function of Q* Hadron multiplicities in low-mult. pp collisions at 7 and 13 TeV
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Interesting for ALICE

Hadron species

* ALICE low multiplicity tunes an option?
* Note Q and p. Both warrants further study!



Rope Hadronization

e Overlapping strings combine into multiplet with effective
string tension &.

Effective string tension from the lattice
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Rope Hadronization

e Overlapping strings combine into multiplet with effective
string tension &.

Effective string tension from the lattice
Rk G(multiplet)

G=>—= .
mee2 Ko Cy(singlet)

Strangeness enhanced by:

PLEP = €Xp <

e QCD + geometry extrapolation from LEP.

e Can never do better than LEP initial conditions!



Strangeness enhancement from ropes

e Good description of strangeness enhancement.
e In PYTHIA for years, used in several ALICE publications.
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(Black ALICE data, red PYTHIA default, blue PYTHIA with ropes)

e Assumption: all strings parallel to beam axis.
e Hyperfine effects not included, baseline is off! 10



New developments

e New calculation of string overlaps — arbitrary geometry.
e Stepping stone for pA and AA, crucial for jets!

e Still caveats before universally applicable.

e Special cases can already be tested! "



Model behaviour minimum bias pp

Key model result is effective K — enhancement.
e Can now be studied differentially!

(ieff/K) vS. Nehargea in p-p collisions, || < 0.5 {Ke/K) VS. P prim. in p-p collisions, || < 0.5, Ne > 10
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Interesting for ALICE

* (dN/dn)|pi<0.5 natural scaling variable.

* Maximal effect at p; ~ 1 GeV. ALICE territory.
12



Jet observables

e Non-observation of jet-quenching in pp is high priority!
e Difficult as no reference, and multiplicity gives jet bias.
e Generator based predictions a way out?

Z+jet observables

& Subtract UE under Z, can work across systems.

& Flavour ratios inside and outside jet
(Vs =13 TeV, anti-kT, R; = 0.4, A@jer.z > 27/3)

e Also potential without Z-bosons, subtraction more tricky.
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Jet observables, results |

e Larger effects in UE than jet, hints at pp jet modification.

N/N(7t* ™) ratio vs.p  jer in jet cone with R; = 0.4, || < 2.1 N/N(7*7”) ratio vs. p, paricle for UE, p_ jot > 10 GeV, [5] < 1.9
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Interesting for ALICE

* PID—-in—jets measurements that no-one else can do (7).

* Small effects — lots of data (HL-LHC?).
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Results 1l: Inside the jets

e More differential — larger effects.
o Expect largest effect at low z = p| particle/ P jet-

e Cannot technically go near z =1 yet.
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e Largest theory caveat is string radius.
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e New developments on string and rope hadronization.
1. Updated baseline model including hyperfine splitting effects.
2. Improved geometry handling of rope hadronization, allowing
jet effects.
e Opportunities: transition to more quantitative regime!
1. Be aware of baselines and tuning when doing model

comparisons.
2. Strangeness in jets a venue for small system jet modifications.

3. Models in continuous development.

Thank you for the invitation!
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