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PYTHIA: Monte Carlo for e+e−, ep, pp, pA, AA and more

General purpose event generator for pp and much, much more!

Recent years: Renewed focus on hadronization models → small
system collectivity.
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This talk

• The baseline (single string hadronization) is crucial for further
model development.

• New development based quark spin–spin interactions.
• Historically tuned to LEP, opportunity for ALICE low-mult

tuning?

• News on ropes (coherent multi-string hadronization) improved
and generalized geometry calculation.

• Necessary ingredient for pA and AA ropes.
• Now: rope effects in jet fragmentation: opportunities for

ALICE measurements?
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Fragmentation of a single string (Lund strings: Phys.Rept. 97 (1983) 31-145)

• Non-perturbative fragmentation, Lund strings, κ ≈ 1 GeV/fm.
• Tuned to LEP data, cleanest environment, poor statistics.

Flavour by tunnelling

♠ P ∝ exp
(
−πm2

⊥
κ

)
, where m is the quark mass → parameter.

From quarks to hadrons

♣ eg. ρ0 = 1√
2

(
|uū〉+ |dd̄〉

)
not so clear.

1. Spin factors.

2. Mass suppression parameters

3. SU(6) Clebsch–Gordans (fl × sp).

? Not very predictive!

? Crucial for event generation.
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No easy choice of parameters! (CB, Chakraborty, Gustafson, Lönnblad: 2201.06316)

• Example: Vector/Pseudoscalar meson parameter: yud × 3.
1. Two string breaks produce a ud̄ state.
2. Q = 1 and S = 0→ ρ+ (vector) or π+ (pseudo–scalar).
3. Pπ+ = 1

1+3yud
,Pρ+ = 3yud

1+3yud
, where Pπ + Pρ = 1.

• Numerically yud = 0.5 and ys = 0.55: “mass splitting”
parameters.

Should split even further!

♠ Colour magnetic moments ∝

1/µ2ud, 1/(µudµs), 1/µ2s

♣ Simple ansatz:
y(ns) = y1 + nsy2

• Similar argument for diquarks (implementation slightly more
complicated).
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Why should I care?

• Low multiplicity is parametrization of LEP!

• Any model must get
baseline right.

• Important not to ignore
historical data.

• Venues for further
exploration?
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Results in e+e−

• Not too much data on interesting final states.
• Tension and “data rot” (extrapolation to full phase space).
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Interesting for ALICE

? Data will rot. Differential preservation key (Rivet).

? Possibilities for re-tuning before model-exclusion.
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Results in ep and pp

• DIS = smallest had. system. ZEUS → φ enhancement? No!
• Low multiplicity pp: Notable changes. To the better?
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Interesting for ALICE

? ALICE low multiplicity tunes an option?

? Note Ω and p. Both warrants further study!
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Rope Hadronization (CB, Gustafson, Lönnblad, Tarasov: 1412.6259 – explored heavily in 80’s and 90’s!)

• Overlapping strings combine into multiplet with effective
string tension κ̃.

Effective string tension from the lattice

κ ∝ C2 ⇒
κ̃

κ0
=

C2(multiplet)

C2(singlet)
.

Strangeness enhanced by:

ρLEP = exp

(
−π(m2

s −m2
u)

κ

)
→ ρ̃ = ρ

κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP initial conditions!
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Strangeness enhancement from ropes

• Good description of strangeness enhancement.
• In PYTHIA for years, used in several ALICE publications.
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• Assumption: all strings parallel to beam axis.
• Hyperfine effects not included, baseline is off! 10



New developments (CB, Chakraborty, Gustafson, Lönnblad: 2202.12783)

• New calculation of string overlaps → arbitrary geometry.
• Stepping stone for pA and AA, crucial for jets!
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• Still caveats before universally applicable.
• Special cases can already be tested!
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Model behaviour minimum bias pp

• Key model result is effective κ→ enhancement.
• Can now be studied differentially!
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Interesting for ALICE

? 〈dN/dη〉||η|<0.5 natural scaling variable.

? Maximal effect at p⊥ ≈ 1 GeV. ALICE territory.
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Jet observables

• Non-observation of jet-quenching in pp is high priority!

• Difficult as no reference, and multiplicity gives jet bias.

• Generator based predictions a way out?

Z+jet observables

♠ Subtract UE under Z, can work across systems.

♣ Flavour ratios inside and outside jet
(
√
s = 13 TeV, anti-kT, Rj = 0.4, ∆φjet,Z > 2π/3)

• Also potential without Z-bosons, subtraction more tricky.
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Jet observables, results I

• Larger effects in UE than jet, hints at pp jet modification.
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Interesting for ALICE

? PID–in–jets measurements that no-one else can do (?).

? Small effects → lots of data (HL-LHC?).
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Results II: Inside the jets

• More differential → larger effects.

• Expect largest effect at low z = p⊥,particle/p⊥,jet.

• Cannot technically go near z = 1 yet.
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• Largest theory caveat is string radius.
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Summary

• New developments on string and rope hadronization.

1. Updated baseline model including hyperfine splitting effects.
2. Improved geometry handling of rope hadronization, allowing

jet effects.

• Opportunities: transition to more quantitative regime!

1. Be aware of baselines and tuning when doing model
comparisons.

2. Strangeness in jets a venue for small system jet modifications.
3. Models in continuous development.

Thank you for the invitation!
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