Two approaches to hadronization reweighting

Christian Bierlich, christian.bierlich@fysik.lu.se Department of Physics, Lund University On behalf of the MLhad collaboration Nov 23, 2023, MPI@LHC Manchester

Hadronization reweighting: the "what" and "why" (arXiv:220331601)

- Necessary component for th/ex comparisons.
- Interesting in its own right: non-perturbative QCD.

- Practical: computational demand rising.
- Exploratory: 1-1 implementations limiting.

Hadronization is fast... but slow!

- Vanilla hadronization is quick compared to e.g.. ME generation, slow compared to e.g.. PS.
 - 1. Rare hadronic final states (rare baryons, correlations,...).
 - 2. Many parameters, tuning hypercube dimensionality.
 - 3. Detector simulation very expensive in parameter scans.
- Solution: Throw more compute at the problem!

- This talk: hadronization reweighting to solve the problems.
 - 1. The string hadronization model and algorithm.
 - 2. Reweighting kinematics.
 - 3. Reweighting flavour.
 - 4. Results & outlook.

- Non-perturbative Lund strings $\kappa \approx 1 \text{ GeV/fm}$.
 - · Several parameters;
 - Usual parton shower.
 - Kinematics: $a, b, \sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

- Several parameters;
 - Usual parton shower.
 - Kinematics: $a, b, \sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

- Several parameters;
 - Usual parton shower.
 - Kinematics: $a, b, \sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

- Several parameters;
 - Usual parton shower.
 - Kinematics: $a, b, \sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

- Several parameters;
 - Usual parton shower.
 - Kinematics: *a*, *b*, $\sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

- Several parameters;
 - Usual parton shower.
 - Kinematics: *a*, *b*, $\sigma_{p_{\perp}}$.
 - Quark/diquark flavour selection: ρ , ξ , x, y.
 - Hadron spin + η , η' suppression.
 - Specialized models (baryons...).
 - More for excited states, usually disabled.

Longitudinal kinematics:
$$f(z) \propto \frac{(1-z)^a}{z} \exp\left(-\frac{bm_{\perp}^2}{z}\right)$$

Flavour and p_{\perp} : $\frac{d\mathcal{P}}{d^2p_{\perp}} \propto \exp\left(-\pi m_{\perp,q}^2/\kappa\right)$

The string break algorithm

- Basic algorithm unchanged since the 1980s.
- Given a partonic state, map into hadronic state, unit weight.
- for each string:
 - 1. Select randomly one end or the other.
 - 2. Pick the hadron flavour.
 - 2.1 Pick string break flavour.
 - 2.2 Force suppression according to SU(6) CG.
 - 2.3 Possibly break.
 - 3. Pick transverse momentum.
 - 4. Pick z and construct full hadron momentum.
 - 5. If energy/momentum used up, **break**.
- Result: Output which looks like measured "events".
- Unit weights means interpretation as single event.

The string break algorithm

- Basic algorithm unchanged since the 1980s.
- Given a partonic state, map into hadronic state, unit weight.
- for each string:
 - 1. Select randomly one end or the other.
 - 2. Pick the hadron flavour.
 - 2.1 Pick string break flavour ←.
 - 2.2 Force suppression according to SU(6) CG \leftarrow .
 - 2.3 Possibly restart.
 - 3. Pick transverse momentum \leftarrow .
 - 4. Pick z and construct full hadron momentum \leftarrow .
 - 5. If energy/momentum used up, **break**.
- Result: Output which looks like measured "events".
- Unit weights means interpretation as single event.

Reweighting: A pedagogical example

- Simple MC: simulate fair coin with weighted coin.
- Sample statistics on "heads", don't want to throw half the "events".
- Let *P*("heads") = 0.8 instead of 0.5, and reweight at level of observable.

• Each "event" 10 tosses, 100k "events", observable $P(n_{\text{heads}})$.

Kinematics reweighting: accept-reject (2308.13459)

• Sample z from f(z). Continuous distribution, standard Accept/Reject algorithm. $f_{reject} = 1 - f_{accept}$ (unitarity).

$$f_{\rm accept}(z,c_i) \equiv \frac{f(z,c_i)}{f_{\rm max}(c_i)} \le 1; z_{\rm trial} \leftarrow R_1; {\rm accept} \; \text{iff} \; f_{\rm accept}(z_{\rm trial}) > R_2.$$

• Now $c_i \mapsto c'_i$. Generate with c_i , weight maps to alternative.

$$W = \prod_{j \in \text{accepted}} \frac{f(z_j, c'_i)}{f(z_j, c_i)} \prod_{k \in \text{rejected}} \frac{f_{\max}(c_i) - f(z_k, c'_i)}{f_{\max}(c'_i) - f(z_k, c_i)}$$

- Standard technique for PS variations.
- Reweighting p_{\perp} analytically.
- **Result**: reweight to alternate reality c_i , even after detector simulation. Note c'_i must be selected *a priori*.

Kinematics reweighting: results I (2308.13459)

- Charged multiplicity, different values of *a*.
- Top: Truth distribution, effect on charged multiplicity (e^+e^-) .
- Bottom: *e*-curves explicitly generated with *a'*, *w'*-curves reweighted from base *a* to *a'*.

• More results in the paper!

Kinematics reweighting: results II (2308.13459)

- Charged multiplicity, different values of *b*.
- Top: Truth distribution, effect on charged multiplicity (e^+e^-) .
- Bottom: *e*-curves explicitly generated with *b'*, *w'*-curves reweighted from base *b* to *b'*.

• More results in the paper!

Kinematics reweighting: results III (2308.13459)

- Charged multiplicity, different values of $\sigma_{p_{\perp}}$.
- Top: Truth distribution, effect on charged multiplicity (e^+e^-) .
- Bottom: *e*-curves explicitly generated with $\sigma'_{p_{\perp}}$, *w'*-curves reweighted from base $\sigma_{p_{\perp}}$ to $\sigma'_{p_{\perp}}$.

• More results in the paper!

Kinematics reweighting: timing (2308.13459)

- Normal tuning: Each variation calculated separately.
- Very time consuming for many parameters!
- Same problem for error bands.

• Vast improvement, allowing 100s of variations!

Flavour reweighting: decision tree Monte Carlo (2312.xxx))

- Sample discrete flavour in string breakups, reweight to alternative reality with different input parameters.
- Weight calculable from string break history (simple only *u*, *d* and *s*. no baryons).

$$\mathcal{P}_{ns}(\rho) = \binom{N}{n} p^n (1-p)^{N-n} \Longrightarrow w = \left(\frac{p}{p'}\right)^n (1-p')^{n-N} (1-p)^{N-n}$$

Flavour reweighting: baryons complicate matters (2312.000)

- Baryons much complicated: only simplest baryon model.
- Further accept/reject \rightarrow SU(6) CGs.

Flavour reweighting: preliminary results I (2312.xxx)

- Result at the level of string breaks, without accept/reject.
- Very rare configuration are often sought by experiment.

- Still only e^+e^- , pp is next step (junctions...).
- Take home: generate your rare hadron (or several) in almost every event, and reweight to correct cross section.

Flavour reweighting: preliminary results II (2312.xxx)

- Results at final particle level, including accept/reject.
- Reweighting from defaults to altered values of ρ , ξ , x and y.

• Method works. Being implemented with normal HepMC weights. Publication in pipeline.

Flavour reweighting: preliminary results II (2312.xxx)

- Results at final particle level, including accept/reject.
- Reweighting from defaults to altered values of ρ , ξ , x and y.

• Method works. Being implemented with normal HepMC weights. Publication in pipeline.

Conclusion and outlook

- Presented way of reweighting hadronization simulation, kinematics and flavour.
- On one hand: a technical improvement, allowing you to simulate quicker.
- On the other hand: a new way of thinking hadronization simulation.
- Reweightable techniques are apparently ubiquitous.
- Longer term: reweight everything, make tuning easy, perhaps per measurement.
- Even longer term: differentiable hadronization algorithm, use for model exclusion or Bayesian inference.
- Extremely long term: invertible models?

Thank you for your attention!

MLhad: M achine L earning Had ronization

- Use ML for data driven hadronization description.
- Improve understanding of hadronization using ML methods.