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Introduction

• A brief overview of Pythia’s venture into heavy ion physics.

• Why?

• Heavy ion phenomena in pp at LHC spurred interest.
• Pythia often used as “baseline” tool.

• But! Underlying models ! = Pythia implementation.

Can we deliver a better baseline?

... or make the Quark–Gluon Plasma redundant?

• This talk: an overview, with lots of questions!

1. Heavy ions in Pythia: MPIs from pp to AA.
2. String interactions, ropes, shoving and details.
3. Hadronic rescatterings.
4. Proton sub-structure with Mueller dipoles.
5. MPIs at EIC..
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MPIs in PYTHIA8 pp (Sjöstrand and Skands: arXiv:hep-ph/0402078)

• Several partons taken from the
PDF.

• Hard subcollisions with 2→ 2 ME:

Figure T. Sjöstrand
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• Picture blurred by CR, but holds in general. 3



Angantyr – the Pythia heavy ion model (CB, G. Gustafson, L. Lönnblad:

arXiv:1607.04434, += Shah: arXiv:1806.10820)

• Pythia MPI model extended to heavy ions since v. 8.235.

1. Glauber geometry with Gribov colour fluctuations.
2. Attention to diffractive excitation & forward production.
3. Hadronize with Lund strings.
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Glauber–Gribov colour fluctuations

• Cross section has EbE colour fluctuations.
• Parametrized in Angantyr, fitted to pp (total, elastic,

diffractive).
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Particle production: Wounded nucleons

• Simple model by Bia las and Czyz.
• Wounded nucleons contribute equally to multiplicity in η.
• Originally: Emission function F (η) fitted to data.

• Angantyr: No fitting to HI data, but include model for
emission function.

• Model fitted to reproduce pp case, high
√
s, can be retuned

down to 10 GeV.
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The emission function

• A schematic view of a pD collision. Contains 3 wounded
nucleons.

• First two are a normal non-diffractive pp event.
• The second one is modelled as a single diffractive event.
• Generalizes to all pA and AA collisions.
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Secondary absorptive interactions

• Similarity: triple-Pomeron diagrams.

Diagram weight proportial to (1 + ∆ = αP(0))

ds

s(1−2∆)

dM2
D

(M2
D)(1+∆)

diffractive excitation,

ds

s(1−∆)

dM2
A

(M2
A)(1−∆)

secondary absorption.
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Some results - pPb

• Centrality measures are delicate, but well reproduced.

• So is charged multiplicity.
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Basic quantities in AA

• Reduces to normal Pythia in pp, in pA in AA:

1. Good reproduction of centrality measure.
2. Particle density at mid–rapidity.
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• Necessary baseline for any full model.
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A clean canvas!

• Angantyr is a foundation on which models for collective
behaviour can be added.

• The rest of the talk: Microscopic collectivity & hadronic
rescatterings w. URQMD.

Hydrodynamics meets PYTHIA Angantyr 62
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(Figure: D. D. Chinellato)
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The Lund String (80’s: Andersson, Bo et al. Z.Phys. C3 (1980) 223, Z.Phys. C20 (1983) 317)

• Non-perturbative phase of final state.
• Confined colour fields ≈ strings with tension κ ≈ 1 GeV/fm.

• Breaking/tunneling with P ∝ exp
(
−πm2

⊥
κ

)
gives hadrons.

Lund symmetric fragmentation function

f (z) ∝ z−1(1− z)a exp

(−bm⊥
z

)
.

a and b related to total multiplicity.

Light flavour determination

ρ =
Pstrange

Pu or d
, ξ =

Pdiquark

Pquark

Related to κ by Schwinger equation.
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Color reconnection? What’s that?

• Many partonic subcollisions ⇒ Many hadronizing strings.
• But! Nc = 3, not Nc =∞ gives interactions.
• Easy to merge low-p⊥ systems, hard to merge two hard-p⊥.

Pmerge =
(γp⊥0)2

(γp⊥0)2 + p2
⊥

Figure T. Sjöstrand

• Actual merging by minimization of ”potential energy”:

λ =
∑

dipoles

log(1 +
√

2E/m0)
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Colour Reconnection – microscopic collectivity?
(Ortiz et al.: 1303.6326, CB QM18: 1807.05217 & mcplots.cern.ch)

- Mechanism allows cross–talk
over an event.

- Based on physics effect.

- Needed for multiplicity &
〈p⊥〉.

- Produces flow–like effect.

, No direct space–time
dependence.

, Concrete model clearly
ad–hoc.

, Short range in rapidity only.

. Nch
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Microscopic final state collectivity

• Clearly we need more! Where is the geometry?

• Proposal: Model microscopic dynamics with interacting Lund
strings

• Additional input fixed or inspired by lattice, few tunable
parameters.

τ ≈ 0 fm: Strings no transverse extension. No interactions,
partons may propagate.

τ ≈ 0.6 fm: Parton shower ends. Depending on ”diluteness”,
strings may shove each other around.

τ ≈ 1 fm: Strings at full transverse extension. Shoving effect
maximal.

τ ≈ 2 fm: Strings will hadronize. Possibly as a colour rope.

τ > 2 fm: Possibility of hadronic rescatterings.
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Rope Hadronization (JHEP 1503 (2015) 148 – explored heavily in 80’s and 90’s!)

• After shoving, strings (p and q) still overlap.
• Combines into multiplet with effective string tension κ̃.

Effective string tension from the lattice

κ ∝ C2 ⇒
κ̃

κ0
=

C2(multiplet)

C2(singlet)
.

Easily calculable using SU(3) recursion relations

{p, q} ⊗~3 = {p + 1, q} ⊕ {p, q + 1} ⊕ {p, q − 1}
⊗ ⊗ ...⊗︸ ︷︷ ︸
All anti-triplets

⊗ ⊗ ⊗ ...⊗︸ ︷︷ ︸
All triplets

• Transform to κ̃ = 2p+q+2
4 κ0 and

2N = (p + 1)(q + 1)(p + q + 2).
• N serves as a state’s weight in the random walk.
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Divide and conquer!

• Consider now the stacking of such pairs.
• SU(3) multiplet structure decided by random walk.

3

6

3̄

10

8

8

1

Three conceptual options

1. Highest multiplet (Rope).
2. Lower multiplet (junction structure).
3. Singlet.
Lower multiplets & singlets → QCD colour reconnection.
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Junction CR (Christiansen and Skands arXiv:1505.01681 [hep-ph])

• Possible structures from QCD-inspired weight.
• Selection relies on λ-measure (potential energy).

Ordinary string
reconnection

(qq: 1/9, gg: 1/8, model: 1/9)

Triple junction
reconnection

(qq: 1/27, gg: 5/256, model: 2/81)

Double junction
reconnection

(qq: 1/3, gg: 10/64, model: 2/9)

Zipping reconnection

(Depends on number of gluons)
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The highest multiplet

• Remaining structure joins in a rope.

• Rope breaks one string at a time, reducing the remaining
tension.

• Junctions carry baryon number.

Strangeness enhanced by:

ρLEP = exp

(
−π(m2

s −m2
u)

κ

)
→ ρ̃ = ρ

κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP description!
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Forward/central multiplicity folding

• Full, honest comparison requires reproduction of
centrality-measure.

• Recently possible in the Rivet project (rivet.hepforge.org, ask for details)
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Strangeness enhancement

• Fair description, but quantitavely off in places.
• Most interesting for further microscopic development!
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An aside about LEP constraints

• Statement: Pythia describes LEP correctly!

• Truth: ... well, mostly!
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• Even LEP leaves room for model development!

• ...and LHC allows for catching suspicious data!

• Needs: Apples-to-apples comparison to data.

22



An aside about Levy–Tsallis fits

• Extrapolated spectra are difficult to compare to!
• For Pythia: Yields matches the fit, 〈p⊥〉 not.
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Take home message

MC: Don’t rely on fits for average quantities when the spectrum
is off.
Pythia still has problems describing this. Shoving could improve
matters.
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String shoving (CB, Gustafson, Lönnblad: 1612.05132, 1710.09725)

• Strings = interacting vortex lines in superconductor.
• For t →∞, profile known from lQCD (Cea et al.: PRD89 (2014) no.9,

094505):

E(r⊥) = C exp
(
−r2
⊥/2R2

)
Eint(d⊥) =

∫
d2r⊥E(~r⊥)E(~r⊥ − ~d⊥)

f (d⊥) =
dEint

dd⊥
=

gκd⊥
R2

exp

(
−d2
⊥(t)

4R2

)
.

• All energy in electric field → g = 1.

• Reality:
Type 1 SC Energy to destroy vacuum.
Type 2 SC Energy in current.
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String shoving (CB, Gustafson, Lönnblad: 1612.05132, 1710.09725)

• Strings = interacting vortex lines in superconductor.
• For t →∞, profile known from lQCD (Cea et al.: PRD89 (2014) no.9,

094505):

E(r⊥) = C exp
(
−r2
⊥/2R2

)
Eint(d⊥) =

∫
d2r⊥E(~r⊥)E(~r⊥ − ~d⊥)

f (d⊥) =
dEint

dd⊥
=

gκd⊥
R2

exp

(
−d2
⊥(t)

4R2

)
.

• All energy in electric field → g = 1.

• Reality:
Type 1 SC Energy to destroy vacuum.
Type 2 SC Energy in current.

24



Shoving: Prehistoric origins

• 1st law of QCD phenomenology: When you think you have a
good idea...

• ...there is already a Russian paper from the 80’es about it.
• Highly underappreciated paper – O(10) citations.
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Some Results: shoving

• Reproduces the pp ridge with suitable choice of g parameter.

• Improved description of v22|∆eta| > 2.(p⊥) at high
multiplicity.

• Low multiplicity not reproduced well – problems for jet
fragmentation?
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Shoving: Why is AA so difficult?

• In pp two crude approximations were made:

1. All strings straight and parallel to the beam axis.
2. Pushes can be added as soft gluons.

• This gives problems in AA, which we are solving:

� Beam axis → parallel frame.
� Soft gluons → push on hadrons.
� Straight strings → treatment of gluon kinks?

(WiP).

• Enough for a toy run!
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A toy example

• Consider an elliptical overlap region filled with straight strings
(no gluons).

• Same shoving parameters as for pp.
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Toy results (Data: ALICE PRL 116 (2016) 132302)

• To take away: The mechanism gives a resonable response.

• A local mechanism can result in global features.
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Toy results (Data: ALICE PRL 116 (2016) 132302)

• To take away: The mechanism gives a resonable response.

• A local mechanism can result in global features.
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Toy results (Data: ALICE PRL 116 (2016) 132302)

• To take away: The mechanism gives a resonable response.

• A local mechanism can result in global features.
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A Z -boson changes the kinematics (CB: arXiv:1901.07447)

• The presence of a Z should not change the physics.
• It can introduce kinematical biases: MC implementation will

handle this.
• Measured by ATLAS (ATLAS-CONF-2017-068).
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Source of jet modifications? (CB: arXiv:1901.07447)

• Toy geometry: Let the jet hadronize inside a pp collision.
• Qualitative similarities with AA results (CMS: PRL 119 (2017) 8).

• AA possibility ahead!

• pp: modifications on jet edge.
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Modifications on the edge

• Can be quantified: Same level as hadronization correction in
σjet(R).

• Perhaps measurable with better low-p⊥ coverage?
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Final state interactions with Angantyr+URQMD (da Silva et al. 2002.10236

[hep-ph])

• Hadronic final state interactions matter!
1. Non-fluid scenario, short times.
2. Made possible by hadron vertex model (see backup).
3. Coming natively to Pythia (Sjöstrand and Utheim: arXiv:2005.05658).

15− 10− 5− 0 5 10 15

x (fm)

15−

10−

5−

0

5

10

15

y 
(f

m
)

b = 0.59 fm

PYTHIA Pb-Pb 2.76 TeV

33



Final state interactions with Angantyr+URQMD (da Silva et al. 2002.10236

[hep-ph])

• Hadronic final state interactions matter!
1. Non-fluid scenario, short times.
2. Made possible by hadron vertex model (see backup).
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Effects on p⊥-spectra

• Pythia will hadronize early, compared to eg. hydro.

• Denser state → more hadronic rescatterings.

• Non-trivial dependence on hadron p⊥.
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Effect on observables

• Effect between 3 < p⊥15 GeV quantified in RAA.

• Two-particle correlations further dissect:

1. Away side structure further suppressed. Hard hadron produced
further towards the surface.

2. Correct hadron vertices key!
3. Effect too small to fully explain STAR measurements.
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Towards EIC (WIP: with Ilkka Helenius; CB & C. O. Rasmussen: 1907.12871 [hep-ph])

• Extending Angantyr to EIC requires knowledge of fluctuating
σabs(Q2).

• Mueller dipole BFKL as parton shower.

Dipole splitting and interaction
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Everything fitted to cross sections

• Avoids fitting to predictions.

• Unitarized dipole-dipole amplitude plus Good-Walker.

T (~b) = 1− exp
(
−
∑

fij

)
, σtot =

∫
d2~b 2T (~b)

.
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The importance of the initial state

• Space–time information is important: We rely on models! Also
true for hydro.

• Here: Overlapping 2D Gaussians (p mass distribution).
• Figure string R = 0.1 fm, reality R ∼ 0.5 fm.
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Geometry in pp, pA and AA

• Assuming ε2,3 ∝ v2,3.

• Dipole model: ε2,3 equal for pp and pPb.
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Flow fluctuations: Looking inside

• Flow fluctuations and normalized symmetric cumulants.

• Best discrimination in pPb.

• Dipole evolution → negative NSC (2, 3) in pPb.
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• Important to develop realistic initial states.

• Point stands also for hydro.
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Glauber for γ∗A

• Correct fluctuations and freezing is neccesary.

• Next steps: Sampling of photon flux (UPCs) and full
integration with final states.
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Thank you for the discussion!

• A summary?

• Ok, Angantyr is here,
and you can use it.

• Strings can do many
interesting things.

• Hadronic
rescatterings matters
more with a dense
hadron gas.

• We can calculate
some proton
sub-structure with
perturbative
techniques.

Thank you for the invitation!
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Some additional material
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String kinematics (B. Andersson et al.: Phys. Rept.97(1983) 31)

• Lund string connects qq̄, tension κ = 1GeV/fm.
• String obey yo–yo motion:

pq0/q̄0=( Ecm
2
−κt)(1;0,0,±1).

• String breaks to hadrons with 4-momenta:

ph = x+
h p+ + x−h p− with p± = pq0/q̄0

(t = 0)

• ... which gives breakup vertices in momentum picture.
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Hadron vertex positions (Ferreres-Solé & Sjöstrand: 1808.04619)

• Translate to space–time breakup vertices through string EOM.

vi =
x̂+
i p++x̂−i p−

κ

• Hadron located between vertices: vhi = vi+vi+1

2

(
+− ph

2κ

)

• Formalism also handles complex topologies.
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Glauber for γ∗A

• Results in fluctuating γ∗-nucleon absorptive cross section.

Wounded nucleon cross section gets frozen

1st:∫
dz

∫
d2~r (|ψL(z , ~r)|2 + |ψT (z , ~r)|2)(2〈T (~b)〉t,p − 〈〈T (~b)〉2t 〉p).

Further:
2〈T (~b)〉t,p − 〈〈T (~b)〉2t 〉p,

• First ingredient of ”soft QCD” EIC generator.
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