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Heavy ions vs. pp (Most material: CB: arXiv:2401.07585)

• Are ion collisions different than many of these stacked
together?
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Standard model of heavy ion physics

• Heavy ions traditionally viewed very differently.

• Experimentally focused on properties of the QGP, viscosity,
temperature, mean-free-path. 3



Flow: the collective behaviour of heavy ions

• Staple measurement: often modeled with hydrodynamics.

(ALICE: 1602.01119)

Fourier series decomposition of ϕ distribution:

dN

dϕ
∝ 1 + 2

∞

∑
n=1

vn cos [n(ϕ −Ψn)]
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Hadron abundances: a QGP thermometer

• The temperature when QGP ends: statistical hadronization.
• Describes yields well with few parameters.

(Figure: D. Chinellato)

(Andronic et al: 1710.09425)

• There are other types of observables (jet quenching, HBT,
quarkonia, ...). But these will be today’s focus.
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Not so clear division!

• LHC revealed heavy-ion like effects in pp collisions.

• And the transition is
smooth!

• Are heavy ion collisions
and pp collisions then
really that different?

(ALICE: Nat. Phys.13 (2017))
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Microscopic view on collectivity

• Can PYTHIA save itself, without introducing QGP?

• Answer: Microscopic, string interaction model.

• If this works well, can it also work in heavy ions?

• If yes, where does it leave the QGP?

• Answer: These are very good questions

• Rest of this lecture:

1. Microscopic model ingredients: string shoving, colour
reconnection, rope formation, hadronic rescattering.

2. Performance against pp data.
3. Performance against AA data.
4. Distinguishing between string interactions and QGP.
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MPIs in PYTHIA8 pp (Sjöstrand and Skands: arXiv:hep-ph/0402078)

• Several partons taken from the
PDF.

• Hard subcollisions with 2 → 2 ME:

Figure T. Sjöstrand

dσ2→2

dp2⊥
∝

α
2
s (p2⊥)
p4⊥

→
α
2
s (p2⊥ + p

2
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(p2⊥ + p2⊥0)2
.

• Momentum conservation and PDF scaling.
• Ordered emissions: p⊥1 > p⊥2 > p⊥4 > ... from:

P(p⊥ = p⊥i) =
1
σnd
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1
σnd

dσ
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• Picture blurred by CR, but holds in general. 8



The Glauber model

Nucleon size: rp =

√
σNN

inel
/4π
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Participants and subcollisions

Basic geometric quantities readily available.

Not directly measurable, don’t believe what they tell you!

(arXiv:0701025)

Source of
“centrality”
binning.
Works fine in
AA, ambiguous
in pA.
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Cross section fluctuations (arXiv:1907.12871, arXiv:1607.04434)

Because protons are not just static balls.

Substructure event by event → modified Glauber calculation
(details in bonus material).
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Cross section fluctuations (arXiv:1907.12871, arXiv:1607.04434)

Because protons are not just static balls.

Substructure event by event → modified Glauber calculation
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Cross section fluctuations (arXiv:1907.12871, arXiv:1607.04434)

Because protons are not just static balls.

Substructure event by event → modified Glauber calculation
(details in bonus material).
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Good–Walker & cross sections

• Cross sections from T (b⃗) with normalizable particle wave
functions:

σtot = 2∫ d
2
b⃗ ⟨T (b⃗)⟩p,t

σel = ∫ d
2
b⃗ ⟨T (b⃗)⟩2p,t

• Name of the game:

1. Make spatial model for T (b⃗).
2. Fit parameters in pp.
3. Use model for pA or AA Glauber.
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Particle production: The Angantyr model (arXiv:1806.10820)

• Emission F (η) per wounded nucleon
→ dN

dη
= ntF (η) + npF (−η).

• F (η) modelled with even gaps in rapidity, as diffraction.

• Tuned to reproduce pp in the nt = np = 1 case.

• No tunable parameters for AA – though some freedom in
choices along the way.

Projectile Target η

dN
dη

target wounded nucleonprojectile wounded nucleon
pp collision

pA collision
AA collision
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Angantyr results

• Reduces to normal Pythia in pp. In pA and AA:
♠ Centrality measures & multiplicities.
♣ Fluctuations more important in pA.
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Adding collective effects

• We now have a whole bunch of strings, but no collective
effects!

• Let the strings interact, starting from pp collisions.
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Pythia: No QGP, just interacting strings

• Contrast to PYTHIA: Let us see how far just strings can take
us.

• Microscopic dynamics , no thermalization, no QGP.
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Shoving: The cartoon picture (arXiv:1710.09725,2010.07595)

• Strings push each other in transverse space.
• Colour-electric fields → classical force.

� Transverse-space geometry.
� Particle production mechanism.
?? String radius and shoving force

17



Shape of the field

• Easier analytic approaches, eg. bag model:
κ = πR

2[(Φ/πR2)2/2 + B]
• No consensus on R with field shape as input.

• Lattice can provide shape, but uncertain R.
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• Solution: Keep shape fixed, but R ballpark-free.
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The shoving force

• Energy in field, in condensate and in magnetic flux.

• Let g determine fraction in field, and normalization N is given:

E = N exp(−ρ2/2R2)

• Interaction energy calculated for transverse separation d⊥,
giving a force:

f (d⊥) =
gκd⊥

R2
exp(− d

2
⊥

4R2
)

• Distance calculated in “shoving frame”, resolved as two-string
interactions.
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String shoving in pp (arXiv:1710.09725,2211.04384,1906.08290,2101.03110)

• Inclusive flow observables well reproduced.
• Add a hard probe trigger, interactions handled.
• In Pythia. Download and play around.

-1

0

1

R
(∆

φ
)

Shoving g = 40
Shoving g = 4
No shoving (Pythia8)
(CMS pp 7 TeV)

0 1 2

∆φ

-1

0

1

R
(∆

φ
)

0 1 2 3

∆φ

N<35 35≤N<90

90≤N<110 N≥110

2.0 GeV<p⟂<3.0 GeV

2.0<|∆η|<4.8

20



String shoving in pp (arXiv:1710.09725,2211.04384,1906.08290,2101.03110)

• Inclusive flow observables well reproduced.
• Add a hard probe trigger, interactions handled.
• In Pythia. Download and play around.

20



String shoving in pp (arXiv:1710.09725,2211.04384,1906.08290,2101.03110)

• Inclusive flow observables well reproduced.
• Add a hard probe trigger, interactions handled.
• In Pythia. Download and play around.

1 0 1 2 3 4

1.000

1.005

1.010

1.015

1.020

1.025

1.030

S(
)/m

in
(S

)

| | > 2.0
| | < 2.5
0.5 GeV < p < 5.0 GeV

The ridge in Z-tagged events, Nch > 110
Pythia 8
Pythia 8 + Shoving
(ATLAS pp high multiplicity)

20



String shoving in pp (arXiv:1710.09725,2211.04384,1906.08290,2101.03110)

• Inclusive flow observables well reproduced.
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String shoving in AA (arXiv:1806.10820,2010.07595)

• Starting point: Angantyr, Pythia heavy ion model (ask...).
• Geometry difficult: Parallel frame.
• Gluon-rich environments difficult: String EOMs.
• Time evolution difficult: Parton shower formalism.
• Many pushes difficult: Cache and add to hadrons.
• N

2
scaling difficult: Buy a new computer.
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Toy initial states (arXiv:2010.07595)

• Remove the gluons + elliptic initial geometry.
• Model behaves like hydro for such initial states.
• Work continues to fully generalize and integrate.
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• Better understanding of model.
• Couple with hadronic rescattering non-trivial (ask...) 22
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Should the strings/prehadrons not be melting? (2205.11170)

• Energy density too high, strings must be melting!

• At early times, energy primarily in partons .

• Flow signals alone cannot discriminate.
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Rope Hadronization (arXiv:1412.6259 – explored heavily in 80’s and 90’s!)

• Overlapping strings combine into multiplet with effective
string tension κ̃.

Effective string tension from the lattice

κ ∝ C2 ⇒
κ̃
κ0

=
C2(multiplet)
C2(singlet)

.

Strangeness enhanced by:

ρLEP = exp(−π(m2
s −m

2
u)

κ ) → ρ̃ = ρ
κ0/κ
LEP

• QCD + geometry extrapolation from LEP.

• Can never do better than LEP initial conditions!
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Rope hadronization from small to large (arXiv:2003.02394, arXiv:1807.05271)
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Summary

• Hadronization models historically important to transform
parton level results.

• Developed into a field of its own.

• Lund string: rich dynamical picture, framework for calculation
and model building.

• Soft QCD: Broad field – topic of interest: similarities with
heavy ions.

• Both: We must rely on models! Given you an idea what those
models look like.
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