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e Are ion collisions different than many of these stacked
together?



Standard model of heavy ion physics

e Heavy ions traditionally viewed very differently.
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e Experimentally focused on properties of the QGP, viscosity,
temperature, mean-free-path.



Flow: the collective behaviour of heavy ions

e Staple measurement: often modeled with hydrodynamics.
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Hadron abundances: a QGP thermometer

e The temperature when QGP ends: statistical hadronization.
e Describes yields well with few parameters.
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e There are other types of observables (jet quenching, HBT,
quarkonia, ...). But these will be today's focus.



Not so clear division!

e LHC revealed heavy-ion like effects in pp collisions.
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e Are heavy ion collisions
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And the transition is
smooth!

and pp collisions then
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Microscopic view on collectivity

Can PYTHIA save itself, without introducing QGP?

Answer: Microscopic, string interaction model.

If this works well, can it also work in heavy ions?

If yes, where does it leave the QGP?



Microscopic view on collectivity

Can PYTHIA save itself, without introducing QGP?

Answer: Microscopic, string interaction model.

If this works well, can it also work in heavy ions?
If yes, where does it leave the QGP?

Answer: These are very good questions

Rest of this lecture:

1. Microscopic model ingredients: string shoving, colour
reconnection, rope formation, hadronic rescattering.

2. Performance against pp data.

Performance against AA data.

4. Distinguishing between string interactions and QGP.
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MPIs in PYTHIAS pp

e Several partons taken from the
PDF.

Hard subcollisions with 2 — 2 ME:

Figure T. Sjostrand
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Picture blurred by CR, but holds in general.



The Glauber model

Nucleon size: r, = | [oNN 147
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Participants and subcollisions

@ Basic geometric quantities readily available.

\‘_3 Not directly measurable, don't believe what they tell you!
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Cross section fluctuations

\‘_) Because protons are not just static balls.

@ Substructure event by event — modified Glauber calculation
(details in bonus material).
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Cross section fluctuations

\‘_) Because protons are not just static balls.

@ Substructure event by event — modified Glauber calculation
(details in bonus material).
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Cross section fluctuations

\‘_) Because protons are not just static balls.

@ Substructure event by event — modified Glauber calculation
(details in bonus material).

— Black Disk
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Good—Walker & cross sections

e Cross sections from T(E) with normalizable particle wave
functions:

Otot = 2 J d2B (T(B)>p,t

= jd25 (T(B))2

e Name of the game:

1. Make spatial model for T(b).
2. Fit parameters in pp.
3. Use model for pA or AA Glauber.

12



Particle production: The Angantyr model

e Emission F(n) per wounded nucleon
— S = neF(n) + npF(=n).
e F(7n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.
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dn

Projectile Target 7]
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Particle production: The Angantyr model

e Emission F(n) per wounded nucleon
— S = neF(n) + npF(=n).
e F(7n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.
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o pp collision
projectile wounded nucleon —= — — — — — — — 4 — — — — — — — — target wounded nucleon

Projectile Target 7]



Particle production: The Angantyr model

e Emission F(n) per wounded nucleon
— S = neF(n) + npF(=n).
e F(7n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.
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Particle production: The Angantyr model

e Emission F(n) per wounded nucleon
— S = neF(n) + npF(=n).
e F(7n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.

dn
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Particle production: The Angantyr model

e Emission F(n) per wounded nucleon
— S = neF(n) + npF(=n).
e F(7n) modelled with even gaps in rapidity, as diffraction.
e Tuned to reproduce pp in the n; = n, = 1 case.
e No tunable parameters for AA — though some freedom in
choices along the way.

,,,,,,,,,,,,,,,,,, pA collision

" collision
projectile wounded nucleon Za =2 target wounded nucleon
Projectile Target 7]
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Angantyr results

e Reduces to normal Pythia in pp. In pA and AA:
#® Centrality measures & multiplicities.
& Fluctuations more important in pA.

Sum EJ? distribution, Pb-Pb \/snx = 2.76 TeV
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Angantyr results

e Reduces to normal Pythia in pp. In pA and AA:
#® Centrality measures & multiplicities.
& Fluctuations more important in pA.

(a) Centrality dependent ; distribution PbPb, /Sy = 5.02 TeV/
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Angantyr results

e Reduces to normal Pythia in pp. In pA and AA:
#® Centrality measures & multiplicities.
& Fluctuations more important in pA.
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Angantyr results

e Reduces to normal Pythia in pp. In pA and AA:
#® Centrality measures & multiplicities.
& Fluctuations more important in pA.

(a) Centrality-dependent 7 distribution, pPb, \/Syn = 5 TeV.

—e— ATLAS
— Pythia8/Angantyr (generated centrality)

80 — — Pythia8/Angantyr (1 Eib bins from data)
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Angantyr results

e Reduces to normal Pythia in pp. In pA and AA:
#® Centrality measures & multiplicities.
& Fluctuations more important in pA.
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Adding collective effects

e We now have a whole bunch of strings, but no collective
effects!
e Let the strings interact, starting from pp collisions.
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Pythia: No QGP, just interacting strings

e Contrast to PYTHIA: Let us see how far just strings can take
us.

e Microscopic dynamics , no thermalization, no QGP.
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Pythia: No QGP, just interacting strings

Contrast to PYTHIA: Let us see how far just strings can take

us.

Microscopic dynamics , no thermalization, no QGP.

~ 0 fm:

0.6 fm:

~ 1 fm:

7 =2 fm:

> 2 fm:

Strings no transverse extension. No interactions,
partons may propagate.

Parton shower ends. Depending on "diluteness”,
strings may shove each other around.

Strings at full transverse extension. Shoving effect
maximal.

Strings will hadronize. Possibly as a colour rope.

Possibility of hadronic rescatterings.
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Pythia: No QGP, just interacting strings

e Contrast to PYTHIA: Let us see how far just strings can take
us.

e Microscopic dynamics , no thermalization, no QGP.

7 = 0 fm: Strings no transverse extension. No interactions,
partons may propagate.

7 = 0.6 fm: Parton shower ends. Depending on "diluteness”,
strings may shove each other around.

7 = 1 fm: Strings at full transverse extension. Shoving effect
maximal.

7 = 2 fm: Strings will hadronize. Possibly as a colour rope.

7 > 2 fm: Possibility of hadronic rescatterings.
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Shoving: The cartoon picture

e Strings push each other in transverse space.
e Colour-electric fields — classical force.
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s Transverse-space geometry.
s Particle production mechanism.
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Shape of the field

e Easier analytic approaches, eg. bag model:
k= 7R°[(®/7TR?)?/2 + B]

e No consensus on R with field shape as input.

e Lattice can provide shape, but uncertain R.

=== Clem profile
0.25 —— Gaussian profile
® Lattice calculation

e Solution: Keep shape fixed, but R ballpark-free.

18



The shoving force

Energy in field, in condensate and in magnetic flux.

Let g determine fraction in field, and normalization N is given:

E = Nexp(—p°/2R?)

Interaction energy calculated for transverse separation d|,
giving a force:

2
_ grdy di
o) =5 p(ﬁ)

Distance calculated in “shoving frame”, resolved as two-string
interactions.

19



String shoving in pp

e Inclusive flow observables well reproduced.
e Add a hard probe trigger, interactions handled.
e In Pythia. Download and play around.

R(Ag)

Shoving g = 40 T
— Shovingg =4
No shoving (Pythia8) ,_¢

2.0 GeV <p, <3.0 GeV
2.0 <|An| <4.8

35 <N <90

N>110




String shoving in pp

Inclusive flow observables well reproduced.
e Add a hard probe trigger, interactions handled.
In Pythia. Download and play around.
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String shoving in

pp

e Inclusive flow observables well reproduced.

e Add a hard probe trigger, interactions handled.

e In Pythia. Download and play around.

The ridge in Z-tagged events, N, > 110
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shoving in pp

Inclusive flow observables well reproduced.
Add a hard probe trigger, interactions handled.
In Pythia. Download and play around.
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String shoving in pp

Inclusive flow observables well reproduced.
e Add a hard probe trigger, interactions handled.
In Pythia. Download and play around.
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String shoving in pp

e Inclusive flow observables well reproduced.
e Add a hard probe trigger, interactions handled.
e In Pythia. Download and play around.
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String shoving in AA

e Starting point: Angantyr, Pythia heavy ion model (ask...).
Geometry difficult: Parallel frame.

Gluon-rich environments difficult: String EOMs.

Time evolution difficult: Parton shower formalism.

Many pushes difficult: Cache and add to hadrons.

N? scaling difficult: Buy a new computer.

21



String shoving in AA

Starting point: Angantyr, Pythia heavy ion model (ask...).
Geometry difficult: Parallel frame.

Gluon-rich environments difficult: String EOMs.

Time evolution difficult: Parton shower formalism.

Many pushes difficult: Cache and add to hadrons.

N? scaling difficult: Buy a new computer.
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String shoving in AA

Starting point: Angantyr, Pythia heavy ion model (ask...).
Geometry difficult: Parallel frame.

Gluon-rich environments difficult: String EOMs.

Time evolution difficult: Parton shower formalism.

Many pushes difficult: Cache and add to hadrons.

N? scaling difficult: Buy a new computer.

Flow coefficient 02{2} with [Ay] > 1.
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Toy initial states

e Remove the gluons + elliptic initial geometry.
e Model behaves like hydro for such initial states.
e Work continues to fully generalize and integrate.

10 b=5fmand p=5fm=2 b=7fmand p=5fm=2 b=10fmand p=5fm~2

y [fm]
o

-10 T T T T T T
-10 =5 0 5 10 -10 -5 0 5
x [fm]

10 -10 -5 0 5 10

e Better understanding of model.
e Couple with hadronic rescattering non-trivial (ask...)
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Toy initial states

e Remove the gluons + elliptic initial geometry.
e Model behaves like hydro for such initial states.
e Work continues to fully generalize and integrate.

vy for Angantyr string densities
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e Better understanding of model.
e Couple with hadronic rescattering non-trivial (ask...) 2



Toy i | states

e Remove the gluons + elliptic initial geometry.
e Model behaves like hydro for such initial states.
e Work continues to fully generalize and integrate.

Eccentricity vs. vy, all centralities p = 30fm™2
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e Better understanding of model.
e Couple with hadronic rescattering non-trivial (ask...) 2o



Toy initial states

Remove the gluons + elliptic initial geometry.

e Model behaves like hydro for such initial states.
e Work continues to fully generalize and integrate.
o =12fm™2 o =20fm™2 o =30fm~2
—_ —_ —_— V2
—_ —_ —_
— 107!
s
2
1072
-1 0 1 2 -1 0 1 2 -1 0 1 2
b¢€;, 6v2 6¢&z, 6v2 6¢&2, 6v

: _ c—(e) _ w»={w)
with dep = ) and dv, = V)

e Better understanding of model.
e Couple with hadronic rescattering non-trivial (ask...) 2



uld the strings/prehadrons not be melting?

e Energy density too high, strings must be melting!

o At early times, energy primarily in partons .

Nen=20 Nen=50

s
: a
o

°
2
4

by () [ 7 TeV)

by (im) [p-Pb 5 Tev]
A b oo on s

s
I g
S 2 d
o 8%
£ »
£
=4 ’
42024 42024 420024 42024
by (fm) by (fm) by (fm) by (fm) [Ney = 1395]

e Flow signals alone cannot discriminate.
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Rope Hadronization

e Overlapping strings combine into multiplet with effective
string tension i<.
Effective string tension from the lattice
£ G(multiplet)

x = — = :
" 27 Ko Co(singlet)
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Rope Hadronization

e Overlapping strings combine into multiplet with effective
string tension i<.

Effective string tension from the lattice

Ko< C = L M
0 Cy(singlet)

Strangeness enhanced by:

2 2
_ 71—(rns _mu) ~ _ KolR
PLEP = €Xp - 5 P =PLEP

e QCD + geometry extrapolation from LEP.
e Can never do better than LEP initial conditions!
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Rope hadronization from small to large

Ratio of yields to (Tt+1T)

=
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e Rope production works in

pp, download Pythia and
play.

e Extension to pA and AA

is still work in progress.
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e Hadronization models historically important to transform
parton level results.

e Developed into a field of its own.

e Lund string: rich dynamical picture, framework for calculation
and model building.

e Soft QCD: Broad field — topic of interest: similarities with
heavy ions.

e Both: We must rely on models! Given you an idea what those
models look like.
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