Hadronization and Soft QCD ...with a bias towards Lund strings

Christian Bierlich, christian.bierlich@fysik.lu.se Department of Physics, Lund University 25 Jan 2024, Graduate Days Graz

Hadronization: What? (PYTHIA manual: arXiv:2203.11601)

Hadronization: Why?

- Because the world is colourless!
- Quarks and gluons from pQCD and showers cannot be observed.
- Need "some way transform", or at least calculate corrections.
- We cannot use pQCD, and lattice QCD has no dynamics.
- Must "rely on models", whatever that means.

Hadronization: Why?

- Because the world is colourless!
- Quarks and gluons from pQCD and showers cannot be observed.
- Need "some way transform", or at least calculate corrections.
- We cannot use pQCD, and lattice QCD has no dynamics.
- Must "rely on models", whatever that means.
- Opportunity to model physics which cannot be solved.
- Good models also have predictive power = fruitful.
- Intruiging LHC discoveries based on our non-understanding.

Lecture(s) overview

- Part I: The overview.
 - 1. Local Parton Hadron Duality & Independent fragmentation.
 - 2. Cluster hadronization.
 - 3. The (Lund) string in brief overview.
- Part II: A closer look at Lund strings.
 - 1. String motion.
 - 2. String motivation.
 - 3. String decay.
- Part III: Thinking for yourself.
 - 1. Some (concept) exercises.
- Part IV: Heavy ion collisions and collectivity
 - 1. Are pp and AA really that different?
 - 2. Interactions between Lund strings.
- What does it mean that "hadronization relies on models"?

Inclusive hadronic cross sections co-incides with (pertubative) quark-gluon cross sections.

Inclusive hadronic cross sections co-incides with (pertubative) quark-gluon cross sections.

For *certain* processes at *high enough* energies.

Inclusive hadronic cross sections co-incides with (pertubative) quark-gluon cross sections.

For *certain* processes at *high enough* energies.

Being appropriately averaged.

Inclusive hadronic cross sections co-incides with (pertubative) quark-gluon cross sections.

For *certain* processes at *high enough* energies.

- Being *appropriately* averaged.
 - Approximately coincides.

Describes momentum specta rather well, but few redeeming factors for event generation. At this point mostly a historical artefact.

Problems with the simple approach

• Motivates "independent fragmentation", basically:

$$q \rightarrow h, ..., h$$

- Can even apply "correction factors" to describe string effects

(Ballochi & Odorico: Nucl. Phys.B 345 (1990) 173-185)

Problems with the simple approach

• Motivates "independent fragmentation", basically:

$$q \rightarrow h, ..., h$$

- Can even apply "correction factors" to describe string effects

(Ballochi & Odorico: Nucl. Phys.B 345 (1990) 173-185)

ر Misses the physics of confinement:

- 1. Partons are coloured.
- 2. Hadronization neutralises the colour.

Unphysical to let single parton fragment to hadrons.

Might be fine if hadronization is just a nuisance, and your goal is to parametrize.

Colour flow & Preconfinement

- Hadronization should involve *at least* two partons with "opposite colour".
- Think of this as $r\bar{r}$, $b\bar{b}$ or $g\bar{g}$ but really a singlet state:

$$rac{1}{\sqrt{3}}(|rar{r}
angle+|bar{b}
angle+|gar{g}
angle).$$

• In *leading colour* (ie. $N_c \rightarrow \infty$) in e^+e^- (cleanest) we get a sense of *preconfinement*:

Universal property of parton shower.

The cluster spectrum

- The Preconfinement property of Parton Showers (Amati & Veneziano: Phys.Lett.B83 (1979) 87)
 - 1. Colour singlet clusters can be formed at any evolution scale Q_0 .
 - 2. Asymptotically universal invariant mass distribution.
 - 3. Meaning: $P = P(M, Q_0, \Lambda_{QCD})$, $Q_0 \ll Q$.

The cluster spectrum

- The Preconfinement property of Parton Showers (Amati & Veneziano: Phys.Lett.B83 (1979) 87)
 - 1. Colour singlet clusters can be formed at any evolution scale Q_0 .
 - 2. Asymptotically universal invariant mass distribution.
 - 3. Meaning: $P = P(M, Q_0, \Lambda_{QCD})$, $Q_0 \ll Q$.

Modelling:

- a) Enforce non-perturbative splitting of g
 ightarrow q ar q.
- b) Quark (and diquark!) flavours must be imposed somwhow.

Cluster decay

 \clubsuit Low-mass clusters \rightarrow spectrum of mesons. \rightarrow Isotropic two-body decay.

 \mathbb{T} High-mass clusters must decay \rightarrow proto-hadrons?

Solution Is $g \to s\bar{s}$ (implicitly higher scale) breaking universal property?

Cluster decay

 Ψ Low-mass clusters ightarrow spectrum of mesons. \rightarrow Isotropic two-body decay.

 $\mathbf{T}_{\mathbf{1}}$ High-mass clusters must decay \rightarrow proto-hadrons?

1 Is $g \to s\bar{s}$ (implicitly higher scale) breaking universal property?

- a) Probably simplest, still well-motivated model.
- b) Used in HERWIG and SHERPA (PYTHIA adding the option).
- c) Physics picture may be exhausted at some point (?)

Strings: The QCD potential

- Maybe we can start somewhere else? A model of dynamics?
- Can draw inspiration from Lattice QCD.

(Figure credit: Torbjörn Sjöstrand)

Strings: The QCD potential

- Maybe we can start somewhere else? A model of dynamics?
- Can draw inspiration from Lattice QCD.

(Figure credit: Torbjörn Sjöstrand)

- Small distances: "Coulomb": Here we use pQCD.
- Large distances: Which system has a linear potential?

 $V(r) \approx \kappa r$; Force = const = $\kappa \approx 1$ GeV/fm

String motion (more on this later) and basics

- Simple, but powerful, dynamical picture: A 3 GeV quark can move 3 fm before all energy is tranferred to the string.
- String *breaks* to produce hadrons (yo-yo modes).
- Constant particle density in rapidity.
- Maximal string length (all E_q to single pion):

$$y_{
m max} pprox \log\left(rac{2E_q}{m_\pi}
ight)
ightarrow {
m rapidity}$$
 plateau

- Microscopic decay laws for string breaking.
- Produces yo-yo's with incoming $q\bar{q}$ ends. Or diquarks.

- Microscopic decay laws for string breaking.
- Produces yo-yo's with incoming $q\bar{q}$ ends. Or diquarks.
- Tunneling with $\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp}^2}{\kappa}\right)$.

Lund symmetric fragmentation function

$$f(z) \propto z^{-1}(1-z)^a \exp\left(\frac{-bm_{\perp}}{z}\right).$$

a and b related to total multiplicity.

- Microscopic decay laws for string breaking.
- Produces yo-yo's with incoming $q\bar{q}$ ends. Or diquarks.
- Tunneling with $\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp}^2}{\kappa}\right)$.

Lund symmetric fragmentation function

$$f(z) \propto z^{-1}(1-z)^a \exp\left(\frac{-bm_{\perp}}{z}\right).$$

a and b related to total multiplicity.

- Microscopic decay laws for string breaking.
- Produces yo-yo's with incoming $q\bar{q}$ ends. Or diquarks.
- Tunneling with $\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp}^2}{\kappa}\right)$.

Lund symmetric fragmentation function

$$f(z) \propto z^{-1}(1-z)^a \exp\left(\frac{-bm_{\perp}}{z}\right)$$

a and b related to total multiplicity.

Flavours by relative probabilities

$$\rho = \frac{\mathcal{P}_{\mathsf{strange}}}{\mathcal{P}_{\mathsf{u} \text{ or } \mathsf{d}}}, \xi = \frac{\mathcal{P}_{\mathsf{diquar}}}{\mathcal{P}_{\mathsf{quark}}}$$

The tunneling equation

- Tunneling a QM phenomenon. Treated in WKB approximation (given assumptions) or in analogy with QED.
- In OVERVIEW (see Andersson et. al.: Phys. Rept. 97 (1983) 31-145 for details)

The tunneling equation

- Tunneling a QM phenomenon. Treated in WKB approximation (given assumptions) or in analogy with QED.
- In overview (see Andersson et. al.: Phys. Rept. 97 (1983) 31-145 for details)

• Directly: q and \bar{q} opposite, compensating kicks:

$$\langle p_{\perp,q}^2 \rangle = \kappa/\pi \approx (0.25 \text{GeV})^2$$

Tunneling equation cont'd

^{*} *p*_⊥ kick not enough to describe data!

- Also directly: Current m_a : $m_s \approx 0.1$ GeV $m_{u,d} \approx 0$. \rightarrow Too many $s\bar{s}$. Constituent m_q : $m_s \approx 0.51$ GeV $m_{u,d} \approx 0.33$ GeV. \rightarrow Too few ss.
- -) Also cannot describe data!
 - Solution: Free parameters. Motivation:
 - p_{\perp} : soft gluon emissions below the shower cut-off.
 - not clear what the correct mass scheme is anyway. m_s :

Tunneling equation cont'd

$lacksymbol{b}_{\perp}$ kick not enough to describe data!

- Also directly: Current m_q : $m_s \approx 0.1$ GeV $m_{u,d} \approx 0$. \rightarrow Too many $s\bar{s}$. Constituent m_q : $m_s \approx 0.51$ GeV $m_{u,d} \approx 0.33$ GeV. \rightarrow Too few $s\bar{s}$.
- 🌯 Also cannot describe data!
 - Solution: Free parameters. Motivation:
 - p_{\perp} : soft gluon emissions below the shower cut-off.
 - ms: not clear what the correct mass scheme is anyway.

Well motivated parametrizations based on limited physics understanding. Parameters are not evil.

Combining quarks to hadrons

• Hadrons in general are superpositions, eg:

$$\rho^{0} = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle + |d\bar{d}\rangle \right), \quad \pi^{0} = \frac{1}{\sqrt{2}} \left(|u\bar{u}\rangle - |d\bar{d}\rangle \right).$$

- "Ingoing" quarks must be combined using other rules:
 - 1. Spin counting: V/PS = 3:1, but $m_{\rho} \gg m_{\pi}$, empirically 1:1 = parameter.
 - 2. Also for same spin: $m_{\eta'} \gg m_{\eta} \gg m_{\pi^0}$ gives mass suppression = parameters.
- Worse for baryons:
 - 1. **SU(6)** (flavour \times spin) Clebsch-Gordans.
 - 2. And simple baryon production model severely lacking.

Ty Around 20 parameters/ "material constants" neccesary.

And these are not the only possible choices (CB et. al.: arXiv:2201.06316)

Popcorn model

- Dynamical model for baryon production, improving "simple diquark".
- Problem: *BB*-pairs produced too close in phase space (rapidity).

Popcorn model

- Dynamical model for baryon production, improving "simple diquark".
- Problem: *BB*-pairs produced too close in phase space (rapidity).

- Effect confirmed at LEP, intermediate mesons observed.
- Modelling can teach us lessons, even with parameters!

Lund string gluons

- Benefit of dynamical picture: Dynamics!
- Historically the most characteristic feature of Lund strings.

- Unique event structure *between* jets!
- Instrumental for MC generators as a whole.

Strings vs. clusters

Clusters:

- Focus on perturbative physics.
- Simple energy-momentum picture.
- Unpredictive.
- Large clusters fragment "string–like".
- Simple flavour composition.
- Few parameters.
- Difficult to extend.

Strings:

- Hadrons should be produced by hadronization.
- Powerful energy-momentum picture.
- Small strings fragment "cluster-like".
- Messy flavour composition.
- Many parameters.
- Easy to extend, but beware of *ad hoc* modelling!

Decays

• Not a sexy task, but someone has to do it.

- Properties provided in machine-readable form.
- But most still must be done "by hand".
- Recently developments towards *final state rescattering*.
- Known physics, but possible large effects.
- Most important for heavy ion physics.
- Also raises questions about transition region.

Before hadronization: From shower to strings

- All is well for a single string.
- But what if you have many? In pp min bias you have tens of MPIs!
- Even in $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$ you have a choice.

Figure E. Nörbin

Before hadronization: From shower to strings

- All is well for a single string.
- But what if you have many? In pp min bias you have tens of MPIs!
- Even in $e^+e^- \rightarrow W^+W^- \rightarrow q\bar{q}q\bar{q}$ you have a choice.

Figure E. Nörbin

• The effect is, however, rather small here.

Colour reconnection models

- In pp handled by "colour reconnection".
- Practical solution, clearly ad hoc.
- Easy to merge low- p_{\perp} systems, hard to merge two hard- p_{\perp} .

$$\mathcal{P}_{merge} = rac{(\gamma p_{\perp 0})^2}{(\gamma p_{\perp 0})^2 + p_{\perp}^2}$$

• Actual merging by minimization of "potential energy":

$$\lambda = \sum_{dipoles} \log(1 + \sqrt{2}E/m_0)$$

Concluding the summary

- Hadronization is neccesary if you want to produce full events.
- Simple models give simple results. Some not well motivated physically, but works for their purpose.
- Better motivated models like strings or clusters are used in generators.
- Beware: Your initial assumptions can only take you so far!
- Are strings more than a model? Is this how Nature works, or are we just parametrizing data?
- Next: Lund strings back to basics.
- Tomorrow: Collective effects from string interactions.
- Now: More details on Lund strings!